Improved new liu-type estimator for poisson regression models

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

Poisson regression models are commonly used in applied sciences such as economics and the social sciences when analyzing the count data. The maximum likelihood method is the well-known estimation technique to estimate the parameters in Poisson regression models. However, when the independent variables are highly intercorrelated, unstable parameter estimates are obtained. Therefore, biased estimators are widely used to alleviate the undesirable effects of these problems. In this study, we proposed a new improved Liu-type estimator as an alternative to other proposed biased estimators. The superiority of the new biased estimator over the existing biased estimators are given under the asymptotic matrix mean square error criterion. Furthermore, Monte Carlo simulation studies are executed to compare the performances of the proposed biased estimators. Finally, the obtained results are illustrated in real data.

Açıklama

Anahtar Kelimeler

Poisson regression models, Biased estimators, Multicollinearity

Kaynak

International Conference of Mathematical Sciences (ICMS 2019)

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Ertan, E, Giresunlu, İ. M. ve Akay, K. U. (2019). Improved new liu-type estimator for poisson regression models. International Conference of Mathematical Sciences (ICMS 2019). s. 187.