Tandoğdu, Y.Cidar, Ö.2024-07-122024-07-122009Tandoğdu, Y. ve Cidar, Ö. (2009). Smoothing the global mean based on functional principal component analysis. Maltepe Üniversitesi. s. 394.9.78605E+12https://hdl.handle.net/20.500.12415/2391There are many cases in almost all application fields where the estimation of population parameters is carried out using sparse data. The data may be time or space ( r) dependent. When such data comes from a set of n trajectories (subjects), the Functional Principal Component Analysis (FPCA) is used to process the data for estimation purposes. In this study, the estimation and smoothing of global mean is considered.enCC0 1.0 Universalinfo:eu-repo/semantics/openAccessSmoothingFunctionalSparse dataCovarianceSmoothing the global mean based on functional principal component analysisConference Object395394