Hereditary orders in the quotient ring of a skew polynomial ring

John S. Kauta

Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam,
Bandar Seri Begawan BE1410, Brunei
kauta@fos.ubd.edu.bn

Abstract

Let K be a field, and let σ be an automorphism of K of finite order, say n. One can form a skew polynomial ring $K[X, \sigma]$ over K with the usual rules of multiplication defined by the commutation rule: $Xn = \sigma(n)X \forall n \in K$. Let $K(X, \sigma)$ denote the skew field of quotients of $K(X, \sigma)$. If F is the fixed field of σ, then $K(X, \sigma)$ is a cyclic algebra of degree n with center $F(X^n)$. If V is a valuation ring of $F(X^n)$ containing F, and S is the integral closure of V in $K(X^n)$, then any order of $K(X, \sigma)$ with center V can be written as a "crossed-product V-algebra":

$$A_f = \sum_{i=0}^{n-1} Sx_i,$$

with the multiplication rule $x_i x_j = \sigma^j(x_i)x_j$ for all $s \in S, 0 \leq i < n$ and $x_i x_0 = f(\sigma^i, \sigma^{-1})x_{i+1}$, where $f : G \times G \rightarrow S \setminus \{0\}$ is some normalized 2-cocycle, and G is the Galois group of the cyclic extension $K(X^n)/F(X^n)$.

Let $H = \{\sigma^i | f(\sigma^i, \sigma^{-1}) \in U(S)\}$, where $U(S)$ denotes the group of the multiplicative units of the ring S. Then H is a subgroup of G. On G/H, one can define a partial ordering by the rule

$$\sigma^i H \leq \sigma^j H \text{ if } f(\sigma^i, \sigma^{-1}) \in U(S).$$

Then \leq is well-defined, and depends only on the cohomology class of f over S. Further, H is the unique least element. We call this partial ordering on G/H the graph of f.

The aim of the talk is to determine the conditions on the graph of f that would guarantee that A_f is a hereditary order.

2000 Mathematics Subject Classification. 16H05, 16S35, 16S36, 16W60.

Key words and phrases. skew polynomial ring, crossed product, hereditary orders, valuation rings.