Show simple item record

dc.contributor.authorCakalli, Huseyin
dc.contributor.authorErsan, Sibel
dc.date.accessioned19.07.201910:50:10
dc.date.accessioned2019-07-19T15:51:30Z
dc.date.available19.07.201910:50:10
dc.date.available2019-07-19T15:51:30Z
dc.date.issued2015
dc.identifier.issn0354-5180
dc.identifier.urihttps://dx.doi.org/10.2298/FIL1510257C
dc.identifier.urihttps://hdl.handle.net/20.500.12415/1720
dc.descriptionWOS: 000366736800009en_US
dc.description.abstractIn this paper, we introduce lacunary statistical ward continuity in a 2-normed space. A function f defined on a subset E of a 2-normed space X is lacunary statistically ward continuous if it preserves lacunary statistically quasi-Cauchy sequences of points in E where a sequence (x(k)) of points in X is lacunary statistically quasi-Cauchy if lim(r ->infinity) 1/h(r) vertical bar{k is an element of I-r : parallel to x(k+1) - x(k), z parallel to >= epsilon}vertical bar = 0 for every positive real number epsilon and z 1/4 X, and (k(r)) is an increasing sequence of positive integers such that k(0) = 0 and h(r) = k(r) - k(r-1) -> infinity as r -> infinity, I-r = (k(r-1), k(r)]. We investigate not only lacunary statistical ward continuity, but also some other kinds of continuities in 2-normed spaces.en_US
dc.language.isoengen_US
dc.publisherUNIV NIS, FAC SCI MATHen_US
dc.relation.isversionof10.2298/FIL1510257Cen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectlacunary statistical convergenceen_US
dc.subjectquasi-Cauchy sequencesen_US
dc.subjectcontinuityen_US
dc.titleLacunary Ward Continuity in 2-normed Spacesen_US
dc.typearticleen_US
dc.relation.journalFILOMATen_US
dc.contributor.departmentMaltepe Üniversitesien_US
dc.authorid0000-0001-7344-5826en_US
dc.authorid0000-0002-3270-6863en_US
dc.identifier.volume29en_US
dc.identifier.issue10en_US
dc.identifier.startpage2257en_US
dc.identifier.endpage2263en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record