dc.contributor.author A. Qazi, Mohammed dc.date.accessioned 2020-07-30T07:11:40Z dc.date.available 2020-07-30T07:11:40Z dc.date.issued 2019 en_US dc.identifier.citation A. Qazi, M. (2019). An inequality for self reciprocal polynomials. International Conference of Mathematical Sciences (ICMS 2019). s. 48. en_US dc.identifier.isbn 978-605-2124-29-1 dc.identifier.uri https://hdl.handle.net/20.500.12415/5055 dc.description.abstract Let Pn be the class of all polynomials of degree at most n. Polynomials f ∈ Pn which satisfy the en_US condition z nf(1/z) ≡ f(z) are called self-reciprocal and form the sub-class P ∗ n of Pn. For any ρ > 0, let M∞(f ; ρ) := max|z|=ρ |f(z)| and Mp(f ; ρ) := ( 1 2π ∫ π −π |f(ρe iθ )| p dθ )1/p , 0 < p < ∞. If f ∈ Pn then Mp(f ′ ; ρ) ≤ nρn−1 Mp(f ; 1) for any p > 0 and ρ ≥ 1, whereas, if f ∈ P∗ n then Mp(f ′ ; ρ) ≤ (n/2)ρ n−1 Mp(f ; 1) for any p > 0 and ρ ≥ 1. Lately, it has been noted that at least for p ≥ 1, there exists a positive number ρn strictly less than 1 such that Mp(f ′ ; ρ) ≤ nρn−1 Mp(f ; 1) for ρ ≥ ρn if f ∈ Pn. By analogy, it has been asked if there was a positive number ρ ∗ n < 1 such that Mp(f ′ ; ρ) ≤ (n/2)ρ n−1 Mp(f ; 1) for all ρ ≥ ρ ∗ n and any f ∈ P∗ n. We propose to discuss this question. dc.language.iso eng en_US dc.publisher Maltepe Üniversitesi en_US dc.rights CC0 1.0 Universal * dc.rights info:eu-repo/semantics/openAccess en_US dc.rights.uri http://creativecommons.org/publicdomain/zero/1.0/ * dc.subject Polynomials en_US dc.subject Bernstein’s inequality en_US dc.subject Zygmund’s inequality en_US dc.title An inequality for self reciprocal polynomials en_US dc.type article en_US dc.relation.journal International Conference of Mathematical Sciences (ICMS 2019) en_US dc.contributor.department Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi en_US dc.identifier.startpage 48 en_US dc.identifier.endpage 48 en_US dc.relation.publicationcategory Uluslararası Konferans Öğesi - Başka Kurum Yazarı en_US dc.contributor.institutionauthor A. Qazi, Mohammed
﻿

### This item appears in the following Collection(s)

Except where otherwise noted, this item's license is described as CC0 1.0 Universal