Show simple item record

dc.contributor.authorA. Qazi, Mohammed
dc.date.accessioned2020-07-30T07:11:40Z
dc.date.available2020-07-30T07:11:40Z
dc.date.issued2019en_US
dc.identifier.citationA. Qazi, M. (2019). An inequality for self reciprocal polynomials. International Conference of Mathematical Sciences (ICMS 2019). s. 48.en_US
dc.identifier.isbn978-605-2124-29-1
dc.identifier.urihttps://hdl.handle.net/20.500.12415/5055
dc.description.abstractLet Pn be the class of all polynomials of degree at most n. Polynomials f ∈ Pn which satisfy the condition z nf(1/z) ≡ f(z) are called self-reciprocal and form the sub-class P ∗ n of Pn. For any ρ > 0, let M∞(f ; ρ) := max|z|=ρ |f(z)| and Mp(f ; ρ) := ( 1 2π ∫ π −π |f(ρe iθ )| p dθ )1/p , 0 < p < ∞. If f ∈ Pn then Mp(f ′ ; ρ) ≤ nρn−1 Mp(f ; 1) for any p > 0 and ρ ≥ 1, whereas, if f ∈ P∗ n then Mp(f ′ ; ρ) ≤ (n/2)ρ n−1 Mp(f ; 1) for any p > 0 and ρ ≥ 1. Lately, it has been noted that at least for p ≥ 1, there exists a positive number ρn strictly less than 1 such that Mp(f ′ ; ρ) ≤ nρn−1 Mp(f ; 1) for ρ ≥ ρn if f ∈ Pn. By analogy, it has been asked if there was a positive number ρ ∗ n < 1 such that Mp(f ′ ; ρ) ≤ (n/2)ρ n−1 Mp(f ; 1) for all ρ ≥ ρ ∗ n and any f ∈ P∗ n. We propose to discuss this question.en_US
dc.language.isoengen_US
dc.publisherMaltepe Üniversitesien_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectPolynomialsen_US
dc.subjectBernstein’s inequalityen_US
dc.subjectZygmund’s inequalityen_US
dc.titleAn inequality for self reciprocal polynomialsen_US
dc.typearticleen_US
dc.relation.journalInternational Conference of Mathematical Sciences (ICMS 2019)en_US
dc.contributor.departmentMaltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesien_US
dc.identifier.startpage48en_US
dc.identifier.endpage48en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.contributor.institutionauthorA. Qazi, Mohammed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal