Show simple item record

dc.date.accessioned2021-04-28T07:03:45Z
dc.date.available2021-04-28T07:03:45Z
dc.date.issued2021en_US
dc.identifier.citationÇakallı, H. (2021). Delta quasi Cauchy sequences in metric spaces. Fourth International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-4.en_US
dc.identifier.isbn978-0-7354-4078-4
dc.identifier.urihttps://aip.scitation.org/doi/10.1063/5.0042190
dc.identifier.urihttps://hdl.handle.net/20.500.12415/7820
dc.description.abstractt. In this extended abstract, we introduce the concept of delta quasi Cauchy sequences in metric spaces. A function f defined on a subset of a metric space X to X is called delta ward continuous if it preserves delta quasi Cauchy sequences, where a sequence (xk) of points in X is called delta quasi Cauchy if limn→∞[d(xk+2, xk+1)−d(xk+1, xk)] = 0. A new type compactness in terms of δ-quasi Cauchy sequences, namely δ-ward compactness is also introduced, and some theorems related to δ-ward continuity and δ-ward compactness are obtained. Some other types of continuities are also discussed, and interesting results are obtained.en_US
dc.language.isoengen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.isversionof10.1063/5.0042190en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectmetric spacesen_US
dc.subjectcontinuityen_US
dc.subjectcompactnessen_US
dc.subjectsequencesen_US
dc.titleDelta quasi Cauchy sequences in metric spacesen_US
dc.typeconferenceObjecten_US
dc.relation.journalFourth International Conference of Mathematical Sciencesen_US
dc.contributor.departmentMaltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesien_US
dc.authorid0000-0001-7344-5826en_US
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesien_US
dc.contributor.institutionauthorÇakallı, Hüseyin


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess