Yazar "Aras, Fuat" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Dynamic properties of steel structures under different construction stages, ambient temperature and live load(Pontificia Univ Catolica Chile, Escuela Construccion Civil, 2021) Aras, Fuat; Karapinar, Isil SanriOperational modal analysis (OMA), assessing the effect of environmental conditions on the structures has been attracting widespread interest and its results have been used for the validation of numerical models. This paper aims to validate the application of OMA on steel buildings to investigate their dynamic behavior during and after their construction. In this context, the construction stages of a steel building were monitored. With the completion of the construction, the dynamic tests were applied at different times to identify the changes in the modal characteristics of the building with respect to the temperature and service loads. Finally, the analytical model of the building was performed and the building's dynamic properties were determined numerically. As a result, the experimentally obtained dynamic properties for the completed building were compared to those derived from numerical analysis. The results underlined the importance of slab construction for the formation of building behavior in the construction stages. Besides the effects of ambient temperature and service load on the dynamic properties of steel buildings were revealed. Finally, the lack of partition walls in the numerical model has been grasped as the main reason behind the differences between the experimentally and numerically obtained dynamic properties.Yayın Full-scaled experimental and numerical investigation on the contribution of masonry infill walls into dynamic behavior of RC buildings(Hindawi Limited, 2022) Aras, Fuat; Akbaş, Tolga; Çeribaşı, Seyit; Çatbaş, Fikret NecatiThe contribution of masonry infill walls (MIW) to the dynamic behavior of reinforced concrete (RC) buildings is investigated in this study. An existing non-symmetrical, six-story reinforced concrete building has been used as a test specimen. Dynamic characteristics of the building have been determined by the ambient vibration survey (AVS) first. Then, the masonry infill walls on its ground floor were completely demolished, and the obtained new form of the building was studied by AVS. Later on, two forms of the building were modeled to visualize its behavior under ambient conditions, and the dynamic characteristics of the building have been determined numerically. The attained experimental and numerical results for both forms of the building were compared, and the constructed numerical models of the building were calibrated by an interactive tuning algorithm defined according to the specific dynamic features of the building. As the last numerical analysis, all MIW were removed from the verified numerical model of the building and the dynamic analysis was repeated. The main goal of the study was accomplished by comparing the experimentally and numerically obtained dynamic results on the basis of dominant frequencies, mode shapes, torsional behavior, and soft story mechanism.Yayın Modelling of infill walls in reinforced concrete buildings under low-amplitude vibrations(Emerald Group Publishing Ltd, 2021) Aras, Fuat; Akbas, Tolga; Ceribasi, Seyit; Catbas, Fikret NecatiA study was undertaken to analyse the capability of conventional finite-element (FE) models to represent the actual dynamic behaviour of masonry infill walls in reinforced concrete (RC) buildings under ambient conditions. Two commonly used modelling techniques were examined - shell elements and diagonal compression struts. An existing non-symmetrical, six-storey RC building was used as a reference structure. The dynamic characteristics of the real building were determined by an ambient vibration survey. Two FE models of the building were then constructed and the dynamic characteristics of the building were determined numerically. Comparisons of the experimentally obtained dynamic properties and those obtained using each numerical model revealed the most appropriate method for visualising the dynamic behaviour of RC buildings under low levels of vibration. The dynamic behaviour of RC buildings under earthquakes and the use of code-based period estimation formulas were then analysed. The results showed that each modelling technique affected the predicted dynamic frequencies substantially; choosing the most suitable model depends on the level of vibration.Yayın Progressive Damage Analyses of Masonry Buildings by Dynamic Analyses(SPRINGER INTERNATIONAL PUBLISHING AG, 2020) Aras, Fuat; Akbas, Tolga; Eksi, Hizir; Ceribasi, SeyitThis study investigates the effects of prescribed damage on the walls of masonry buildings by experimental and numerical methods. Ambient vibration survey method was applied to an existing, two-story, unreinforced masonry building to determine its dynamic characteristics, such as mode shapes and natural frequencies. Then, the walls on two exterior sides of the building were demolished, and dynamic testing was repeated for the damaged building. As the next step, the amount of damage on the building was increased by more impacts, and the dynamic characteristics of the heavily damaged building were identified. The results obtained from the undamaged, damaged and heavily damaged building were compared, and the damage effect on the natural frequencies of the building was noted. Besides, finite element analyses of the undamaged, damaged and heavily damaged buildings were performed. It was found that, the numerical models, constructed with code-based material properties, do not sufficiently represent the dynamic behavior of masonry buildings. Secondly, as the result of the sustained damage, while the experimental and the numerical modal analyses revealed the decrease in the dominant frequencies of the building, the difference between them increases with the severity of the damage. With the framework presented in this study, the behavior of masonry buildings can better be determined and used for analysis purposes.