Yazar "Harte, Robin" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Abstract book(Maltepe Üniversitesi, 2019) Çakallı, Hüseyin; Savaş, Ekrem; Sakallı, İzzet; Horgan, Jane; Daly, Charlie; Power, James; Kocinac, Ljubi^sa; Cavalanti, M. Marcelo; Corrˆea, Wellington J.; Özsarı, Türker; Sep´ulveda, Mauricio; Asem, Rodrigo V´ejar; Harte, Robin; Açıkgöz, Ahu; Esenbel, Ferhat; Jabor, Ali Ameer; Omran, Ahmed abd-Ali; Varol, Banu Pazar; Kanetov, Bekbolot; Baidzhuranova, Anara; Saktanov, Ulukbek; Kanetova, Dinara; Zhanakunova, Meerim; Liu, Chuan; Yıldırım, Esra Dalan; Şahin, Hakan; Altun, Ishak; Türkoğlu, Duran; Akız, Hürmet Fulya; Mucuk, Osman; Motallebi, Mohammad Reza; Demir, Serap; Şahan, Tunçar; Kelaiaia, Smail; Yaying, Taja; Noiri, Takashi; Vergili, Tane; Çetkin, Vildan; Misajleski, Zoran; Shekutkovski, Nikita; Durmishi, Emin; Berkane, Ali; Belhout, Mohamed; Es-Salih, Aries Mohammed; Sönmez, Ayşe; Messirdi, Bachir; Derhab, Mohammed; Khedim, Tewfik; Karim, Belhadj; Affane, Doria; Yarou, Mustapha Fateh; Yılmaz, Fatih; Sertbaş, Meltem; Bouchelaghem, Faycal; Ardjouni, Abdelouaheb; Djoudi, Ahcene; Çiçek, Gülseren; Mahmudov, Elimhan; El-Metwally, Hamdy A.; AL-kaff, M.; Mustafayev, Heybetkulu; Duru, Hülya; Biroud, KheireddineOn behalf of the Organizing Committee, we are very pleased to welcome you to the 3nd International Confer- ence of Mathematical Sciences (ICMS 2019) to be held between 4-8 September 2019 at Maltepe University in Istanbul. We hope that, ICMS 2019 will be one of the most beneficial scientific events, bringing together mathematicians from all over the world, and demonstrating the vital role that mathematics play in any field of science.Yayın Spectral disjointness and invariant subspaces(Maltepe Üniversitesi, 2019) Harte, RobinSpectral disjointness confers a certain ”independence” upon linear operators. If G is a ring with identity I then an idempotent Q = Q2 ? G gives the ring G a block structure G ?= A M N B where for example A = QGQ; then T = a m n b ? G commutes with Q iff it is a ”block diagonal”: T Q = QT ?? T = a 0 0 b . Specialising to complex Banach algebras, for block diagonals there is two way implication ?A(a) ? ?B(b) = ? ?? Q ? Holo(T) : Q = f(T) with f : U ? G holomorphic on an open neighbourhood of ?G(T). Weaker spectral disjointness gives a little less: ? lef t A (a) ? ? right B (b) = ? =? Q ? comm2 (T) : the block structure idempotent Q “double commutes” with T ? G. Specializing to G = B(X), the bounded operators on a Banach space, closed complemented subspaces Y ? X give us again the block structure, and operators T ? G for which Y is “invariant” become “block triangles”: T(Y ) ? Y ?? T = a m 0 b . When Y ? X is not complemented then the block structure is missing and we must resort to the restriction and the quotient: a = TY ? A = B(Y ) ; b = T/Y ? B(X/Y ) . Now spectral disjointness ?A(a) ? ?B(b) = ? ensures that the subspace Y ? X is both hyperinvariant and reducing, in particular complemented.Yayın Where algebra and topology meet: a cautionary tale(Maltepe Üniversitesi, 2009) Harte, RobinIn a sense the Kuratowski conditions reduce topology to algebra. In another sense a simple property of Banach algebras ushers in a curious topology for rings.