Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Araştırmacılar
  • Projeler
  • Birimler
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kushel, Olga Y." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Yayın
    Spectral properties of one class of sign-symmetric matrices
    (Maltepe Üniversitesi, 2009) Kushel, Olga Y.
    A matrix A of a linear operator A : R n ? R n is called J –sign-symmetric, if there exists such a subset J ? {1, . . . , n}, that the inequality aij ? 0 follows from the inclusions i ? J , j ? J c and j ? J , i ? J c for any two numbers i, j, and one of the inclusions i ? J , j ? J c or j ? J , i ? J c follows from the strict inequality aij < 0 (here J c = {1, . . . , n} \ J ). This definition is a generalization of the well-known definition of positive matrices, which are widely used in economics, mechanics, biology and other branches of science. Let A be a J –sign-symmetric matrix, and let J be a subset of {1, . . . , n} in the definition of J –sign-symmetricity. Let its second compound matrix A(2) also be a J –sign-symmetric matrix. Let Je be a subset of {1, . . . , C2 n} in the definition of J –sign-symmetricity for the matrix A(2). Let us construct the set W(J , Je) ? ({1, . . . , n} × {1, . . . , n}) by the following way: (i, j) ? W(J , Je) if and only if one of the following two cases takes place: (a) both the numbers i, j belong either to the set J , or to the set J c , besides, if i < j, then the number of the pair (i, j) in the lexicographic numeration belongs to the set Je, and if i > j, then the number of the pair (j, i) belongs to the set Jec = {1, . . . , C2 n} \ Je; (b) one of the numbers i, j belongs to the set J , the other belongs to the set J c , besides, if i < j, then the number of the pair (i, j) belongs to the set Jec , and if i > j, then the number of the pair (j, i) belongs to the set Je. Such a set is not uniquely defined, but there is a finite number of different ways of its constructing. The set W(J , Je) is called transitive if the inclusion (i, k) ? W(J , Je) follows from the inclusions (i, j) ? W(J , Je) and (j, k) ? W(J , Je) for any indices i, j, k ? {1, . . . , n}. Theorem 0.1 Let the matrix A of a non-zero linear operator A be J –sign-symmetric together with its second compound matrix A(2). Then the operator A has a positive eigenvalue ?1 = ?(A). More than that, if ?1 is a simple eigenvalue, then one of the following two cases takes place: (1) If at least one of the possible sets W(J , Je) is transitive, then the second in modulus eigenvalue ?2 of the operator A is nonnegative and different in modulus from the first eigenvalue ?1. (2) If all the possible sets W(J , Je) are not transitive, there there is an odd number k of eigenvalues on the spectral circle |?| = ?(A). All of them are simple and coincide with kth roots of (?(A))k .

| Maltepe Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Maltepe Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim