Yazar "Moazzen, Nazanin" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Comprehensive parameters for the definition of nearly zero energy and cost optimal levels considering the life cycle energy and thermal comfort of school buildings(Elsevier Science Sa, 2021) Moazzen, Nazanin; Karaguler, Mustafa Erkan; Ashrafian, TourajThere has been an increasing interest in studying energy efficiency in buildings in the recent years, as they account for a significant portion of energy consumption and greenhouse gas emissions worldwide. While most of the studies focus on the buildings' operational phase, a substantial part of buildings' energy consumption is disguised as embodied energy. It is impossible to have a zero energy building, as it is necessary to use materials to build the building, and those materials need to produce and transport energy. Life cycle analysis is the utmost efficient method to assess how a building affects the environ-ment. Notably, the impact of buildings on the environment across their lifespans are determined by some factors, which comprise materials, design, construction, use and demolition. The study aims to present the implementation of a life cycle approach and occupant thermal comfort during the school building's energy efficiency design. The study's principal objective focuses on the energy use and environmental impact linked to various alternatives of building envelopes in different cli-mates. Within this context, a reference building located in three different climatic regions of Turkey is investigated. Two ranges of efficiency comprise the focal points of the study. Cost-optimal and nearly zero energy levels are defined for each city. In the hot climate, the cost-optimal scenario cannot improve the comfort conditions, whereas the nZEB scenario improves slightly in such a context. In temperate and cold climates, both strategies can improve comfort conditions. The share of embodied energy and carbon in the nZEB level can reach higher than 80 percent, whereas it is lower than 15 percent in the cost -optimal level. (c) 2021 Elsevier B.V. All rights reserved.Yayın The impact of glazing ratio and window configuration on occupants' comfort and energy demand: The case study of a school building in Eskisehir, Turkey(ELSEVIER SCIENCE BV, 2019) Ashrafian, Touraj; Moazzen, NazaninVarious investigations have confirmed that pupils and teachers' learning/teaching performance and health depend heavily on the quality and amount of daylight and indoor thermal conditions. The primary aim of using natural light in schools is to reduce energy consumption and costs, but it should also improve students' performance. An appropriate configuration of windows improves visual and thermal comfort by reducing glare, distributing light and controlling solar energy gain. The study focuses on the impact of different transparency ratios (WWR) and window combinations in two critical orientations (west and east) on occupants' comfort and the energy demands of a classroom. A building was selected for a case study investigation at the design stage. One east-facing and one west-facing classroom were studied. The two classrooms were simulated with the aid of the lighting and energy simulation programs DIALux Evo 6.0, DesignBuilder 5.5 and EnergyPlus 8.9. The results indicated that a glazing ratio of 50% would reduce the requirement for artificial lighting by at least 15% as well as providing more comfortable conditions.Yayın A multi-criteria approach to affordable energy-efficient retrofit of primary school buildings(ELSEVIER SCI LTD, 2020) Moazzen, Nazanin; Ashrafian, Touraj; Yilmaz, Zerrin; Karaguler, Mustafa ErkanThe majority of the buildings was built before the energy efficiency prospering in the construction sector. Hence, they are consuming an enormous energy amount that can be preserved considerably by applying some not even advanced retrofit measures. Schools' low budget is a problem that managers are encountered. Thus the high retrofit cost can prevent taking proper actions. However, considering the measures leading to higher energy efficiency with appropriate cost and payback period, together with taking the lifespan of buildings and the economic benefits during this extended period, would make the actions attractive. This research aims at defining a multi-parameter approach to distinguish energy efficient measures with proper cost, payback period and CO2 emission for primary school buildings' retrofit. It is following the concept of cost-optimal building retrofit introduced by the EPBD-recast. To assess the proposed approach, two typical school buildings were considered as case studies, the model was created and validated by real consumptions, and then some measures were applied to the envelope, mechanical and lighting system. After driven cost-optimal measures, the comfort analyses were conducted and some of the measures were excluded due to worsening the comfort conditions. The results indicate that, in the suitable cost-optimal scenarios, the potential of primary energy savings and CO2 emission reductions are approximately 60%, and savings for global cost would amount to more than 42%, while the payback periods are less than seven years.