Yazar "Mustafayev, Heybetkulu" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Abstract book(Maltepe Üniversitesi, 2019) Çakallı, Hüseyin; Savaş, Ekrem; Sakallı, İzzet; Horgan, Jane; Daly, Charlie; Power, James; Kocinac, Ljubi^sa; Cavalanti, M. Marcelo; Corrˆea, Wellington J.; Özsarı, Türker; Sep´ulveda, Mauricio; Asem, Rodrigo V´ejar; Harte, Robin; Açıkgöz, Ahu; Esenbel, Ferhat; Jabor, Ali Ameer; Omran, Ahmed abd-Ali; Varol, Banu Pazar; Kanetov, Bekbolot; Baidzhuranova, Anara; Saktanov, Ulukbek; Kanetova, Dinara; Zhanakunova, Meerim; Liu, Chuan; Yıldırım, Esra Dalan; Şahin, Hakan; Altun, Ishak; Türkoğlu, Duran; Akız, Hürmet Fulya; Mucuk, Osman; Motallebi, Mohammad Reza; Demir, Serap; Şahan, Tunçar; Kelaiaia, Smail; Yaying, Taja; Noiri, Takashi; Vergili, Tane; Çetkin, Vildan; Misajleski, Zoran; Shekutkovski, Nikita; Durmishi, Emin; Berkane, Ali; Belhout, Mohamed; Es-Salih, Aries Mohammed; Sönmez, Ayşe; Messirdi, Bachir; Derhab, Mohammed; Khedim, Tewfik; Karim, Belhadj; Affane, Doria; Yarou, Mustapha Fateh; Yılmaz, Fatih; Sertbaş, Meltem; Bouchelaghem, Faycal; Ardjouni, Abdelouaheb; Djoudi, Ahcene; Çiçek, Gülseren; Mahmudov, Elimhan; El-Metwally, Hamdy A.; AL-kaff, M.; Mustafayev, Heybetkulu; Duru, Hülya; Biroud, KheireddineOn behalf of the Organizing Committee, we are very pleased to welcome you to the 3nd International Confer- ence of Mathematical Sciences (ICMS 2019) to be held between 4-8 September 2019 at Maltepe University in Istanbul. We hope that, ICMS 2019 will be one of the most beneficial scientific events, bringing together mathematicians from all over the world, and demonstrating the vital role that mathematics play in any field of science.Yayın Norm and almost everywhere convergence of convolution powers(Maltepe Üniversitesi, 2019) Mustafayev, HeybetkuluLet G be a locally compact abelian group with the dual group ?, M (G), the measure algebra of G, and Mr (G), the largest regular subalgebra of M (G). For a power bounded measure µ ? M (G), we put Fµ = {? ? ? : µb (?) = 1} and Eµ = {? ? ? : |µb (?)| = 1} , where µb is the Fourier-Stieltjes transform of µ. Let (?, ?, m) be a ??finite positive measure space and let ? = {?g}g?G be an action of G in (?, ?, m) by invertible measure preserving transformations. Any action ? induces a representation T = {Tg}g?G of G on L p (?) (1 ? p < ?) by invertible isometries, where (Tgf) (?) = f (?g?). If ? is continuous, then for any µ ? M (G), we can define a bounded linear operator on L p (?) (1 ? p < ?) associated with µ, denoted by Tµ, which integrates Tg with respect to µ. Theorem. Let µ ? Mr (G) be power bounded and 1 < p < ?. If Fµ = Eµ, then the sequence { Tn µ f } converges strongly for every f ? L p (G).