Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Araştırmacılar
  • Projeler
  • Birimler
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sonmez, Ayse" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Yayın
    AN APPROACH TO SOFT FUNCTIONS
    (UNIV PRISHTINES, 2017) Aras, Cigdem Gunduz; Sonmez, Ayse; Cakalli, Huseyin
    In this paper, using a more appreciate definition of a soft point, i.e. a soft point is a soft set (F, E) such that for the element e is an element of E, F(e) = {x} and F(e ') = (empty set) for all e ' is an element of E - {e}, we present a new approach to soft functions in a interesting way, and introduce the concepts of soft continuous, soft open, soft closed, and soft homeomorfic functions in a very different way from the source existing in the literature. In the investigation we prove theorems related to these concepts and provide with examples, and counterexamples.
  • Küçük Resim Yok
    Yayın
    Lacunary statistical ward continuity
    (AMER INST PHYSICS, 2015) Cakalli, Huseyin; Aras, Cigdem Gunduz; Sonmez, Ayse; Ashyralyev, A; Malkowsky, E; Lukashov, A; Basar, F
    The main object of this paper is to investigate lacunary statistically ward continuity. We obtain some relations between this kind of continuity and some other kinds of continuities. It turns out that any lacunary statistically ward continuous real valued function on a lacunary statistically ward compact subset E subset of R is uniformly continuous.
  • Küçük Resim Yok
    Yayın
    On an equivalence of topological vector space valued cone metric spaces and metric spaces
    (PERGAMON-ELSEVIER SCIENCE LTD, 2012) Cakalli, Huseyin; Sonmez, Ayse; Genc, Cigdem
    Scalarization method is an important tool in the study of vector optimization as corresponding solutions of vector optimization problems can be found by solving scalar optimization problems. Recently this has been applied by Du (2010) [14] to investigate the equivalence of vectorial versions of fixed point theorems of contractive mappings in generalized cone metric spaces and scalar versions of fixed point theorems in general metric spaces in usual sense. In this paper, we find out that the topology induced by topological vector space valued cone metric coincides with the topology induced by the metric obtained via a nonlinear scalarization function, i.e any topological vector space valued cone metric space is metrizable, prove a completion theorem, and also obtain some more results in topological vector space valued cone normed spaces. (C) 2011 Elsevier Ltd. All rights reserved.
  • Küçük Resim Yok
    Yayın
    Slowly oscillating continuity in abstract metric spaces
    (UNIV NIS, FAC SCI MATH, 2013) Cakalli, Huseyin; Sonmez, Ayse
    In this paper, we investigate slowly oscillating continuity in cone metric spaces. It turns out that the set of slowly oscillating continuous functions is equal to the set of uniformly continuous functions on a slowly oscillating compact subset of a topological vector space valued cone metric space.
  • Küçük Resim Yok
    Yayın
    Soft matrices on soft multisets in an optimal decision process
    (AMER INST PHYSICS, 2016) Coskun, Arzu Erdem; Aras, Cigdem Gunduz; Cakalli, Huseyin; Sonmez, Ayse; Ashyralyev, A; Lukashov, A
    In this paper, we introduce a concept of a soft matrix on a soft multiset, and investigate how to use soft matrices to solve decision making problems. An algorithm for a multiple choose selection problem is also provided. Finally, we demonstrate an illustrative example to show the decision making steps.

| Maltepe Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Maltepe Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim