Spectral properties of difference operator over the space bvp (1 ? p ? 1)

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this work our purpose is to find the continuous dual bv? p of the sequence space bvp (1? p<?) consisting of all sequences (xk) such that (xk? xk? 1) in the sequence space lp, to find the norm of the difference operator? acting on the space bvp, and fine spectrum with respect to the Goldberg’s classification of the operator? over the space bvp. 1. The space bvp has been introduced by Basar and Altay [1], where they have proved that bvp is a BK-space, and also have studied the ?-, ?-and ?-duals of the space bvp. Define the spaces d1 and dq consisting of all sequences a=(ak) normed by ad1= sup k, n? N

Açıklama

Anahtar Kelimeler

Kaynak

International Conference on Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Akhmedov, A. M. (2009). Spectral properties of difference operator over the space bvp (1 ? p ? 1). International Conference on Mathematical Sciences, Maltepe Üniversitesi. s. 30-31.