Spectral properties of difference operator over the space bvp (1 ? p ? 1)
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
In this work our purpose is to find the continuous dual bv? p of the sequence space bvp (1? p<?) consisting of all sequences (xk) such that (xk? xk? 1) in the sequence space lp, to find the norm of the difference operator? acting on the space bvp, and fine spectrum with respect to the Goldberg’s classification of the operator? over the space bvp. 1. The space bvp has been introduced by Basar and Altay [1], where they have proved that bvp is a BK-space, and also have studied the ?-, ?-and ?-duals of the space bvp. Define the spaces d1 and dq consisting of all sequences a=(ak) normed by ad1= sup k, n? N
Açıklama
Anahtar Kelimeler
Kaynak
International Conference on Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Akhmedov, A. M. (2009). Spectral properties of difference operator over the space bvp (1 ? p ? 1). International Conference on Mathematical Sciences, Maltepe Üniversitesi. s. 30-31.