Fully spectral methods for the solution of high order differential equations

dc.contributor.authorVaissmoradi, N.
dc.contributor.authorMalek, A.
dc.contributor.authorMomeni-Masuleh, S. H.
dc.date.accessioned2024-07-12T20:50:25Z
dc.date.available2024-07-12T20:50:25Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn the recent years spectral methods are used for solving stiff and non-stiff partial differential equations and ordinary differential equations. Various types of spectral methods for steady and unsteady problems are proposed to solve stiff and non-stiff partial differential equations efficiently. In this article some schemes for solving stiff partial differential equations are derived. There are twofold: first method is based on Chebyshev polynomials for solving high-order boundary value problems. Second methods are based on Fourier-Galerkin and collocation spectral methods in space and Runge-Kutta, exponential time differencing, Taylor expansion and contour integral in time for solving stiff PDEs. Numerical results show the efficiency of proposed schemes.en_US
dc.identifier.citationVaissmoradi, N., Malek, A. ve Momeni-Masuleh, S. H. (2009). Fully spectral methods for the solution of high order differential equations. Maltepe Üniversitesi. s. 297.en_US
dc.identifier.endpage298en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage297en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2337
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07702
dc.titleFully spectral methods for the solution of high order differential equationsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar