Minimum distance between two ellipses

dc.contributor.authorTounchev, Ivaylo
dc.date.accessioned2024-07-12T20:49:03Z
dc.date.available2024-07-12T20:49:03Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractWe consider the distance problem between two ellipses in R 3 . This problem arises in widely disparate fields as celestial mechanics [1], computer animation, computer vision, CAD/CAM [2] and so on. We proof that in the general case, the complex critical points of the square of the distance between two ellipses are at most sixteen and they correspond to the roots of sixteenth degree polynomial which coefficients are real and depend explicitly of the ellipses equations. We prove that the real critical points are between four and sixteen. We give as example the distance between Neptune and Pluto. Then both ellipses have the Sun as a common focus; the critical points are six: one maximum, three saddle points and two local minima. We prove that the global minimum is about 2.52 astronomical units.en_US
dc.identifier.citationTounchev, I. (2019). Minimum distance between two ellipses. International Conference of Mathematical Sciences (ICMS 2019). s. 199.en_US
dc.identifier.endpage200en_US
dc.identifier.isbn978-605-2124-29-1
dc.identifier.startpage199en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2099
dc.institutionauthorTounchev, Ivaylo
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciences (ICMS 2019)en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY01461
dc.subjectEllipsesen_US
dc.subjectDistanceen_US
dc.subjectEuclidean spaceen_US
dc.titleMinimum distance between two ellipsesen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar