Application of least square method to numerical solution of second-order boundary value problems

dc.contributor.authorLoghmani, G. B.
dc.date.accessioned2024-07-12T20:50:12Z
dc.date.available2024-07-12T20:50:12Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe numerical solution of second order linear and nonlinear boundary value problems with a general Sturm-Liouville boundary conditions is considered. A second degree B-spline functions is used to construct the numerical method. E.H.Twizell, H.N.Caglar and S.H.Caglar used a collocation method and B-spline functions of one degree higher of order of boundary value problems. But we use B-spline functions of same degree of the order of boundary value problems we will show that for every ? > 0, there exist an approximate solution v? such that the least square error is less than ? > 0 and v? satisfies the exact boundary conditions.en_US
dc.identifier.citationLoghmani, G. B. (2009). Application of least square method to numerical solution of second-order boundary value problems. Maltepe Üniversitesi. s. 169.en_US
dc.identifier.endpage165en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage164en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2289
dc.institutionauthorLoghmani, G. B.
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07616
dc.titleApplication of least square method to numerical solution of second-order boundary value problemsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar