Some properties of EM rings
dc.authorid | 0000-0001-6631-895X | en_US |
dc.contributor.author | Ghanem, Manal | |
dc.contributor.author | Abu Osba, Emad | |
dc.date.accessioned | 2024-07-12T20:49:13Z | |
dc.date.available | 2024-07-12T20:49:13Z | |
dc.date.issued | 2019 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | A commutative ring R is called an EM ring if for each polynomial f in R[x] there exists a ? R such that f = ag and g is regular. The class of EM-rings includes integral domains, principal ideal rings, and PP-rings, while it is included in Armendariz rings, and rings having a.c. condition. For Noethrian rings, EM rings and generalized morphic rings are equivalent. We investigate when R, the polynomial ring R[x] and the amalgamated duplication ring R ?? I are EM rings. | en_US |
dc.identifier.citation | Ghanem, M. ve Abu Osma, E. (2019). Some properties of EM rings. International Conference of Mathematical Sciences (ICMS 2019). s. 208. | en_US |
dc.identifier.endpage | 209 | en_US |
dc.identifier.isbn | 978-605-2124-29-1 | |
dc.identifier.startpage | 208 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2143 | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences (ICMS 2019) | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY01507 | |
dc.subject | Polynomial ring | en_US |
dc.subject | Power series ring | en_US |
dc.subject | Annihilating content | en_US |
dc.subject | EM-ring | en_US |
dc.subject | Generalized morphic ring | en_US |
dc.subject | Zerodivisor graph | en_US |
dc.title | Some properties of EM rings | en_US |
dc.type | Article | |
dspace.entity.type | Publication |