FORWARD CONTINUITY

dc.authorid0000-0001-7344-5826en_US
dc.contributor.authorCakalli, Huseyin
dc.date.accessioned2024-07-12T21:50:39Z
dc.date.available2024-07-12T21:50:39Z
dc.date.issued2011en_US
dc.departmentMaltepe Üniversitesien_US
dc.description.abstractA real function f is continuous if and only if (f(x(n))) is a convergent sequence whenever (x(n)) is convergent and a subset E of R is compact if any sequence x = (x(n)) of points in E has a convergent subsequence whose limit is in E where R is the set of real numbers. These well known results suggest us to introduce a concept of forward continuity in the sense that a function f is forward continuous if lim(n ->infinity)Delta(f) (x(n)) = 0 whenever lim(n ->infinity)Delta x(n) = 0 and a concept of forward compactness in the sense that a subset E of R is forward compact if any sequence x = (x.) of points in E has a subsequence z = (z(k)) = (x(nk)) of the sequence x such that lim(n ->infinity)Delta z(k)= 0 where Delta z(k) = z(k+1) z(k). We investigate forward continuity and forward compactness, and prove related theorems.en_US
dc.identifier.endpage230en_US
dc.identifier.issn1521-1398
dc.identifier.issue2en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage225en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/8176
dc.identifier.volume13en_US
dc.identifier.wosWOS:000288575900002en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Science
dc.institutionauthorCakalli, Huseyin
dc.language.isoenen_US
dc.publisherEUDOXUS PRESS, LLCen_US
dc.relation.ispartofJOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKY01862
dc.subjectContinuityen_US
dc.subjectsequencesen_US
dc.subjectseriesen_US
dc.subjectsummabilityen_US
dc.subjectcompactnessen_US
dc.titleFORWARD CONTINUITYen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar