On the (delta,f)-lacunary statistical convergence of the functions
Küçük Resim Yok
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
In this paper, we introduce the concept of ?f -lacunary statistical convergence for a ?-measurable real-valued function defined on time scale, where f is an unbounded modulus. Our motivation here is that this definition includes many well-known concepts which already exist in the literature. We also define strong ?f -lacunary Cesaro summability on a time scale and give some results related to these new concepts. Furthermore, we obtain necessary and sufficient conditions for the equivalence of ?f-convergence and ?f -lacunary statistical convergence on a time scale.
Açıklama
Anahtar Kelimeler
Modulus function, Lacunary statistical convergence, Delta measure on time scale, Time scale
Kaynak
Maltepe Journal of Mathematics
WoS Q Değeri
Scopus Q Değeri
Cilt
2
Sayı
1
Künye
Sözbir, B., Altundağ, S. ve Başarır, M. (2020). On the (delta,f)-lacunary statistical convergence of the functions. Maltepe Journal of Mathematics, 2(1), s.1-8.