Gelfand’s theorem unplugged

dc.contributor.authorHarte, Robin E.
dc.date.accessioned2024-07-12T20:47:42Z
dc.date.available2024-07-12T20:47:42Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIt was Norbert Wiener who made the observation that if a non-vanishing continuous function on the circle has an absolutely convergent Fourier series, then so does its reciprocal. Israel Gelfand saw in this picture the concept of a commutative Banach algebra, and extended Wiener’s observation to these Banach algebra elements, with a completely different proof based on “maximal ideals”. In this note we claim that the several variable spectral mapping theorem is able to unplug the Gelfand theory from the life support system of these elusive maximal ideals.en_US
dc.identifier.citationHarte, R. E. (2019). Gelfand’s theorem unplugged. AIP Conference Proceedings.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2029
dc.institutionauthorHarte, Robin E.
dc.language.isoenen_US
dc.publisherAIP Publishingen_US
dc.relation.ispartofAIP Conference Proceedingsen_US
dc.relation.publicationcategoryUlusal Konferans Öğesien_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY00136
dc.titleGelfand’s theorem unpluggeden_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar