Almost picard operators

dc.contributor.authorAltun, İshak
dc.contributor.authorAslan Hacer, Hatice
dc.date.accessioned2024-07-12T20:49:12Z
dc.date.available2024-07-12T20:49:12Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe concept of Picard operator is one of the most important concept of fixed point theory. As known, a self mapping T of a metric space X is called Picard operator (PO) if it has unique fixed point and every Picard iteration sequence converges to this fixed point. There some weaker forms of PO in the litareture as weakly Picard operator (WPO) and pseudo Picard operator (PPO). In this study, we present a new kind of PO as almost Picard operator (APO) and we show the differences from the others. Then we show that every continuous P-contractive self mapping of a compact metric space is APO. Also we present some open problems.en_US
dc.identifier.citationAltun, İ, ve Aslan Hacer, H. (2019). Almost picard operators. International Conference of Mathematical Sciences (ICMS 2019). s. 94.en_US
dc.identifier.endpage94en_US
dc.identifier.isbn978-605-2124-29-1
dc.identifier.startpage94en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2138
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciences (ICMS 2019)en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY01502
dc.subjectPicard operatoren_US
dc.subjectFixed pointen_US
dc.subjectContractive mappingen_US
dc.titleAlmost picard operatorsen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar