Almost picard operators
dc.contributor.author | Altun, İshak | |
dc.contributor.author | Aslan Hacer, Hatice | |
dc.date.accessioned | 2024-07-12T20:49:12Z | |
dc.date.available | 2024-07-12T20:49:12Z | |
dc.date.issued | 2019 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | The concept of Picard operator is one of the most important concept of fixed point theory. As known, a self mapping T of a metric space X is called Picard operator (PO) if it has unique fixed point and every Picard iteration sequence converges to this fixed point. There some weaker forms of PO in the litareture as weakly Picard operator (WPO) and pseudo Picard operator (PPO). In this study, we present a new kind of PO as almost Picard operator (APO) and we show the differences from the others. Then we show that every continuous P-contractive self mapping of a compact metric space is APO. Also we present some open problems. | en_US |
dc.identifier.citation | Altun, İ, ve Aslan Hacer, H. (2019). Almost picard operators. International Conference of Mathematical Sciences (ICMS 2019). s. 94. | en_US |
dc.identifier.endpage | 94 | en_US |
dc.identifier.isbn | 978-605-2124-29-1 | |
dc.identifier.startpage | 94 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2138 | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences (ICMS 2019) | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY01502 | |
dc.subject | Picard operator | en_US |
dc.subject | Fixed point | en_US |
dc.subject | Contractive mapping | en_US |
dc.title | Almost picard operators | en_US |
dc.type | Article | |
dspace.entity.type | Publication |