Applied Comparison of DBSCAN, OPTICS and K-Means Clustering Algorithms

Küçük Resim Yok

Tarih

2005

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Gazi Univ

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

DBSCAN and OPTICS are two recent clustering algorithms on data mining. In this study, these two algorithms and K-means which is one of the oldest clustering algorithms are compared. Comparison is based on cluster discovery performance on synthetic database. Consequently, two recent clustering algorithms DBSCAN and OPTICS are performed superior accuracy and cluster discovery ability over K-means algorithm.

Açıklama

Anahtar Kelimeler

Data Mining, Clustering Analysis, Dbscan, Optics, K-Means

Kaynak

Journal of Polytechnic-Politeknik Dergisi

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

8

Sayı

2

Künye