Common zeros of exponential polynomials and shapiro conjecture

dc.contributor.authorAbbas, Hassane
dc.contributor.authorHajj-Diab, Ahmed
dc.date.accessioned2024-07-12T20:50:18Z
dc.date.available2024-07-12T20:50:18Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractShapiro conjectured that if two exponential polynomials have infinitely many zeros in common, they have a non trivial common factor. In this paper we prove this conjecture in many particular cases where the coefficients of the polynomials are algebraic and the frequencies are linear combination with rational coefficients of two algebraic numbers.en_US
dc.identifier.citationAbbas, H. ve Hajj-Diab, A. (2009). Common zeros of exponential polynomials and shapiro conjecture. Maltepe Üniversitesi. s. 194.en_US
dc.identifier.endpage195en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage194en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2304
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07631
dc.titleCommon zeros of exponential polynomials and shapiro conjectureen_US
dc.typeConference Object
dspace.entity.typePublication

Files