A description of 3-place functions of idempotent algebras
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
An algebra is idempotent if and only if for every algebraic operation f the equation f(x,x,...,x)=x holds for every x. In [4], K.Urbanik characterize the set of all binary operations of idempotent algebras that has no essentially n-ary algebraic operation for some n > 2. In this paper we characterize the set of all ternary algebraic operations of idempotent algebras that has no essentially n-ary algebraic operation for some n > 3 and show that this set is finite and costruct a ternary algebra.
Açıklama
Anahtar Kelimeler
Kaynak
International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Pashazadeh, J. (2009). A description of 3-place functions of idempotent algebras. Maltepe Üniversitesi. s. 215.