A description of 3-place functions of idempotent algebras

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

An algebra is idempotent if and only if for every algebraic operation f the equation f(x,x,...,x)=x holds for every x. In [4], K.Urbanik characterize the set of all binary operations of idempotent algebras that has no essentially n-ary algebraic operation for some n > 2. In this paper we characterize the set of all ternary algebraic operations of idempotent algebras that has no essentially n-ary algebraic operation for some n > 3 and show that this set is finite and costruct a ternary algebra.

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Pashazadeh, J. (2009). A description of 3-place functions of idempotent algebras. Maltepe Üniversitesi. s. 215.