On the symmetry of Hamiltonian systems

dc.contributor.authorGupta, V. G.
dc.contributor.authorSharma, P.
dc.date.accessioned2024-07-12T20:56:16Z
dc.date.available2024-07-12T20:56:16Z
dc.date.issued2009en_US
dc.departmentMaltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesien_US
dc.description.abstractIn this paper, we use the formalism of Hamiltonian system on symplectic manifold due to Reeb[2] given in Abraham and Marsden[6] and Arnold[7] to derive the equation of motion for (1) A particle on a line in a plane with a spring force and (2) A free particle in n-space. The time flows for both the problems mentioned above are also determined and proved that the determined flow is a Hamiltonian flow, i.e., the symmetry of a Hamiltonian system. A non-Hamiltonian flow is also considered and it is shown that by changing the symplectic form and the phase space of the system we can convert it into a Hamiltonian flow. The translation and rotational symmetry related to linear and angular momentum respectively for the motion of a free particle in n-space is also considered, which is useful in reducing the phase space of a mechanical system.en_US
dc.identifier.citationGupta, V. G. ve Sharma, P. (2009). On the symmetry of Hamiltonian systems. Maltepe Üniversitesi. s. 376.en_US
dc.identifier.endpage377en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage376en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2953
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07677
dc.subjectHamiltonian systemen_US
dc.subjectSymplectic manifolden_US
dc.subjectLie-group actionen_US
dc.subjectHamiltonian flowen_US
dc.titleOn the symmetry of Hamiltonian systemsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar