Exponential family and special entropy relation

dc.contributor.authorBeirollahi, Arman
dc.date.accessioned2024-07-12T20:51:48Z
dc.date.available2024-07-12T20:51:48Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this article ,we derive Taneja’s entropy formula for exponential family so that the derived formula by Menendez (2000) is a special case of it. We will obtain proper Taneja’s entropy formulas for Gamma, Beta and Normal distributions. At last we will review the asymptotic distribution of ³ HT (?ˆ) ? HT (?) ´ in regular exponential models. Let x, ?x, P?, ? ? ? be a statistical space where ? is an open subset of Rm. We consider that there exist p.d.f. f?(x) for the distribution P? with respect to a ?-finite measure µ. In 1975 Taneja introduced the generalized entropy as follows, where either? : [0, ?) ? R is concave and h : R ? R is an increasing and concave or ? is convex and h is a decreasing and concave. Furthermore we assume that h and ? are in C 3 (functions with continuous third derivatives) . If we put?(x) = x r log x andh(x) = ?2 r?1x then the Taneja’s entropy formula is obtained. The exponential family of kparameter distribution is, Theorem: Let f?(x) be a density of the form [1] with R(x) = 0, then, Pasha et. al [1] obtained the formula of divergnce measure by use of Taneja’s entropy in exponential family.en_US
dc.identifier.citationBeitollahi, A. (2009). Exponential family and special entropy relation. Maltepe Üniversitesi. s. 111.en_US
dc.identifier.endpage112en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage111en_US
dc.identifier.urihttps://www.maltepe.edu.tr/Content/Media/CkEditor/03012019014112056-AbstractBookICMS2009Istanbul.pdf#page=331
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2474
dc.institutionauthorBeirollahi, Arman
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07839
dc.titleExponential family and special entropy relationen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar