Norm and almost everywhere convergence of convolution powers

dc.authorid0000-0003-2498-3884en_US
dc.contributor.authorMustafayev, Heybetkulu
dc.date.accessioned2024-07-12T20:49:27Z
dc.date.available2024-07-12T20:49:27Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractLet G be a locally compact abelian group with the dual group ?, M (G), the measure algebra of G, and Mr (G), the largest regular subalgebra of M (G). For a power bounded measure µ ? M (G), we put Fµ = {? ? ? : µb (?) = 1} and Eµ = {? ? ? : |µb (?)| = 1} , where µb is the Fourier-Stieltjes transform of µ. Let (?, ?, m) be a ??finite positive measure space and let ? = {?g}g?G be an action of G in (?, ?, m) by invertible measure preserving transformations. Any action ? induces a representation T = {Tg}g?G of G on L p (?) (1 ? p < ?) by invertible isometries, where (Tgf) (?) = f (?g?). If ? is continuous, then for any µ ? M (G), we can define a bounded linear operator on L p (?) (1 ? p < ?) associated with µ, denoted by Tµ, which integrates Tg with respect to µ. Theorem. Let µ ? Mr (G) be power bounded and 1 < p < ?. If Fµ = Eµ, then the sequence { Tn µ f } converges strongly for every f ? L p (G).en_US
dc.identifier.citationMustafayev, H. (2019).Norm and almost everywhere convergence of convolution powers. International Conference of Mathematical Sciences (ICMS 2019). s. 42.en_US
dc.identifier.endpage42en_US
dc.identifier.isbn978-605-2124-29-1
dc.identifier.startpage42en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2174
dc.institutionauthorMustafayev, Heybetkulu
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciences (ICMS 2019)en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY01539
dc.subjectAbelian groupen_US
dc.subjectMeasure algebraen_US
dc.subjectL p -spaceen_US
dc.subjectConvergenceen_US
dc.titleNorm and almost everywhere convergence of convolution powersen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar