Norm and almost everywhere convergence of convolution powers
dc.authorid | 0000-0003-2498-3884 | en_US |
dc.contributor.author | Mustafayev, Heybetkulu | |
dc.date.accessioned | 2024-07-12T20:49:27Z | |
dc.date.available | 2024-07-12T20:49:27Z | |
dc.date.issued | 2019 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | Let G be a locally compact abelian group with the dual group ?, M (G), the measure algebra of G, and Mr (G), the largest regular subalgebra of M (G). For a power bounded measure µ ? M (G), we put Fµ = {? ? ? : µb (?) = 1} and Eµ = {? ? ? : |µb (?)| = 1} , where µb is the Fourier-Stieltjes transform of µ. Let (?, ?, m) be a ??finite positive measure space and let ? = {?g}g?G be an action of G in (?, ?, m) by invertible measure preserving transformations. Any action ? induces a representation T = {Tg}g?G of G on L p (?) (1 ? p < ?) by invertible isometries, where (Tgf) (?) = f (?g?). If ? is continuous, then for any µ ? M (G), we can define a bounded linear operator on L p (?) (1 ? p < ?) associated with µ, denoted by Tµ, which integrates Tg with respect to µ. Theorem. Let µ ? Mr (G) be power bounded and 1 < p < ?. If Fµ = Eµ, then the sequence { Tn µ f } converges strongly for every f ? L p (G). | en_US |
dc.identifier.citation | Mustafayev, H. (2019).Norm and almost everywhere convergence of convolution powers. International Conference of Mathematical Sciences (ICMS 2019). s. 42. | en_US |
dc.identifier.endpage | 42 | en_US |
dc.identifier.isbn | 978-605-2124-29-1 | |
dc.identifier.startpage | 42 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2174 | |
dc.institutionauthor | Mustafayev, Heybetkulu | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences (ICMS 2019) | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY01539 | |
dc.subject | Abelian group | en_US |
dc.subject | Measure algebra | en_US |
dc.subject | L p -space | en_US |
dc.subject | Convergence | en_US |
dc.title | Norm and almost everywhere convergence of convolution powers | en_US |
dc.type | Article | |
dspace.entity.type | Publication |