p-ward continuity in 2-normed spaces

dc.contributor.authorErsan, Sibel
dc.date.accessioned2024-07-12T20:49:04Z
dc.date.available2024-07-12T20:49:04Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, the concept of a quasi-Cauchy sequence is generalized to a concept of a p-quasi-Cauchy sequence for any fixed positive integer p in 2-normed space X. Some interesting theorems related to p-ward continuity and uniform continuity are obtained. A sequence (xn) in a 2-normed space X is called p-quasiCauchy if limn??en_US
dc.description.abstractxn+p ? xn, zen_US
dc.description.abstract= 0 for each z ? X. It turns out that if a function f defined on a subset of X is uniformly continuous then f preserves p-quasi-Cauchy sequences for all positive integer pen_US
dc.identifier.citationErsan, S. (2019). p-ward continuity in 2-normed spaces. International Conference of Mathematical Sciences (ICMS 2019). s. 86.en_US
dc.identifier.endpage86en_US
dc.identifier.isbn978-605-2124-29-1
dc.identifier.startpage86en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2104
dc.institutionauthorErsan, Sibel
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciences (ICMS 2019)en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY01466
dc.subjectSequencesen_US
dc.subjectSeriesen_US
dc.subjectSummabilityen_US
dc.subjectContinuityen_US
dc.subjectCompactnessen_US
dc.subject2-normed spacesen_US
dc.titlep-ward continuity in 2-normed spacesen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar