Abel statistical convergence in metric spaces

dc.authorid0000-0001-7344-5826en_US
dc.contributor.authorÇakallı, Hüseyin
dc.date.accessioned2024-07-12T20:49:24Z
dc.date.available2024-07-12T20:49:24Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this study, we investigate the concepts of Abel statistical convergence and Abel statistical quasi Cauchy sequences. A function f from a subset E of a metric space X into X is called Abel statistically ward continuous it preserves Abel statistical quasi Cauchy sequences, where a sequence (xk) of point in E is called Abel statistically quasi Cauchy if limx?1? (1 ? x) ? k:d(xk+1,xk)?? x k = 0 for every ? > 0. Some other types of continuities are also studied and interesting results are obtained.en_US
dc.identifier.citationÇakallı, H. (2019). Abel statistical convergence in metric spaces. International Conference of Mathematical Sciences (ICMS 2019). s. 77.en_US
dc.identifier.endpage77en_US
dc.identifier.isbn978-605-2124-29-1
dc.identifier.startpage77en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2168
dc.institutionauthorÇakallı, Hüseyin
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciences (ICMS 2019)en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY01533
dc.subjectAbel statistical convergenceen_US
dc.subjectCompactnessen_US
dc.subjectContinuityen_US
dc.titleAbel statistical convergence in metric spacesen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar