Abel statistical convergence in metric spaces
dc.authorid | 0000-0001-7344-5826 | en_US |
dc.contributor.author | Çakallı, Hüseyin | |
dc.date.accessioned | 2024-07-12T20:49:24Z | |
dc.date.available | 2024-07-12T20:49:24Z | |
dc.date.issued | 2019 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | In this study, we investigate the concepts of Abel statistical convergence and Abel statistical quasi Cauchy sequences. A function f from a subset E of a metric space X into X is called Abel statistically ward continuous it preserves Abel statistical quasi Cauchy sequences, where a sequence (xk) of point in E is called Abel statistically quasi Cauchy if limx?1? (1 ? x) ? k:d(xk+1,xk)?? x k = 0 for every ? > 0. Some other types of continuities are also studied and interesting results are obtained. | en_US |
dc.identifier.citation | Çakallı, H. (2019). Abel statistical convergence in metric spaces. International Conference of Mathematical Sciences (ICMS 2019). s. 77. | en_US |
dc.identifier.endpage | 77 | en_US |
dc.identifier.isbn | 978-605-2124-29-1 | |
dc.identifier.startpage | 77 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2168 | |
dc.institutionauthor | Çakallı, Hüseyin | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences (ICMS 2019) | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY01533 | |
dc.subject | Abel statistical convergence | en_US |
dc.subject | Compactness | en_US |
dc.subject | Continuity | en_US |
dc.title | Abel statistical convergence in metric spaces | en_US |
dc.type | Article | |
dspace.entity.type | Publication |