G-Connectedness for Product Spaces

dc.contributor.authorMucuk, O.
dc.contributor.authorBehram, S.
dc.contributor.authorÇakallı, H.
dc.date.accessioned2024-07-12T21:40:42Z
dc.date.available2024-07-12T21:40:42Z
dc.date.issued2022en_US
dc.department[Belirlenecek]en_US
dc.description5th International Conference of Mathematical Sciences, ICMS 2021 -- 23 June 2021 through 27 June 2021 -- -- 184127en_US
dc.description.abstractSequential convergence is quite useful to define some topological notions. As a generalization of convergences of sequences a G-method is defined in [13] by Connor and Grosse-Erdmann to be a real valued function defined on a linear subspace of the vector space of all real sequences. Based on this definition some authors have introduced the concepts G-compactness and G-connectedness for topological groups. In this work we consider G-methods on product spaces; and characterise the G-connectedness of product topological spaces with some results. © 2022 American Institute of Physics Inc.. All rights reserved.en_US
dc.identifier.doi10.1063/5.0115542
dc.identifier.isbn9.78074E+12
dc.identifier.issn0094-243X
dc.identifier.scopus2-s2.0-85142516468en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1063/5.0115542
dc.identifier.urihttps://hdl.handle.net/20.500.12415/7452
dc.identifier.volume2483en_US
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.relation.ispartofAIP Conference Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKY08796
dc.subjectConvergence Sequencesen_US
dc.subjectG-Sequential Connectednessen_US
dc.subjectProduct Spacesen_US
dc.titleG-Connectedness for Product Spacesen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar