Frobenius q-groups and 2-transitive frobenius q-groups

dc.contributor.authorErkoç, Temha
dc.contributor.authorGüzel, Erhan
dc.date.accessioned2024-07-12T20:51:31Z
dc.date.available2024-07-12T20:51:31Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractA finite group whose complex characters are rationally-valued is called a Q-group. For example, all of the symmetric groups and finite elemantary abelian 2-groups are Q-groups. The property of being a Q-group is characterized by saying that the generators of every cyclic subgroup are conjugate. Depending upon the group, by using this characterization, it may be easier to say that the group is a Q-group or not. Kletzing’s lecture notes present a detailed investigation into the structure of Q-groups. In group theory, general classification of Q-groups has not been able to be done up to now, but some special Q- groups have been classified. In this study, we find the structure of Frobenius Q-groups with a new proof and all 2-transitive Frobenius Q-groups.en_US
dc.identifier.citationErkoç, T. ve Güzel, E. (2009). Frobenius q-groups and 2-transitive frobenius q-groups. Maltepe Üniversitesi. s. 371.en_US
dc.identifier.endpage372en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage371en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2424
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07789
dc.subjectFrobenius groupsen_US
dc.subjectRational groupsen_US
dc.titleFrobenius q-groups and 2-transitive frobenius q-groupsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar