Some properties of solutions to dynamical systems
Küçük Resim Yok
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
We consider the following differential inclusion with discontinuous right-hand sides: x?(t) ? ? (t, x (t)) (1) where ? is a set-valued function (i.e., multifunction) which associates with any point x ? R n, a set ? (t, x) ? R n and x (·) is an absolutely continuous (AC) function from [0, T] to R n. We say that the function x (·) ? AC ([0, T] , R n) with x (0) = x0 satisfying (1) almost everywhere is a solution to the system (1) with the initial condition x0. In this paper, we derive some properties concerning set-valued functions satisfying one-sided Lipschitz condition and solutions to the system (1) in a weighted space.
Açıklama
Anahtar Kelimeler
Set-valued functions, One-sided Lipschitz condition, Differential inclusion
Kaynak
International Conference of Mathematical Sciences (ICMS 2019)
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
İlter, S. (2019). Some properties of solutions to dynamical systems. International Conference of Mathematical Sciences (ICMS 2019). s. 56.