Variations on lacunary statistical quasi Cauchy sequences

dc.authorid0000-0003-3763-0308en_US
dc.contributor.authorYıldız, Şebnem
dc.date.accessioned2024-07-12T20:47:43Z
dc.date.available2024-07-12T20:47:43Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, we introduce a concept of lacunary statistically p-quasi-Cauchyness of a real sequence in the sense that a sequence (?k) is lacunary statistically p-quasi-Cauchy if limr?? 1 hr |{k ? Ir : |?k+p ? ?k | ? ?}| = 0 for each ? > 0. A function f is called lacunary statistically p-ward continuous on a subset A of the set of real numbers R if it preserves lacunary statistically pquasi-Cauchy sequences, i.e. the sequence f(x) = (f(?n)) is lacunary statistically p-quasi-Cauchy whenever ? = (?n) is a lacunary statistically p-quasi-Cauchy sequence of points in A. It turns out that a real valued function f is uniformly continuous on a bounded subset A of R if there exists a positive integer p such that f preserves lacunary statistically p-quasi-Cauchy sequences of points in A.en_US
dc.identifier.citationYıldız, Ş. (2019). Variations on lacunary statistical quasi Cauchy sequences. AIP Conference Proceedings.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2031
dc.institutionauthorYıldız, Şebnem
dc.language.isoenen_US
dc.publisherAIP Publishingen_US
dc.relation.ispartofAIP Conference Proceedingsen_US
dc.relation.publicationcategoryUlusal Konferans Öğesien_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY00138
dc.subjectLacunary statistical convergenceen_US
dc.subjectQuasi-Cauchy sequencesen_US
dc.subjectContinuityen_US
dc.titleVariations on lacunary statistical quasi Cauchy sequencesen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar