A New Topology Via a Topology
dc.contributor.author | Dagci, F.I. | |
dc.contributor.author | Çakallı, Hüseyin | |
dc.date.accessioned | 2024-07-12T21:40:43Z | |
dc.date.available | 2024-07-12T21:40:43Z | |
dc.date.issued | 2022 | en_US |
dc.department | [Belirlenecek] | en_US |
dc.description | 5th International Conference of Mathematical Sciences, ICMS 2021 -- 23 June 2021 through 27 June 2021 -- -- 184127 | en_US |
dc.description.abstract | In this extended abstract, we modify the definition of h-open set introduced in [1] by F. Abbas who neglects that the set of all h-open sets is a topology, and we show that the union of any family of h-open subsets of X is h-open that ensures that the set of all h-open subsets of a topological space (X, ?) forms a topology which is finer than ?, where a subset A of a topological space (X, ?) is said to be h-open if A ? Int(A ? U) for every non-empty subset U of X such that U ? ?. We also give continuity type theorems. © 2022 American Institute of Physics Inc.. All rights reserved. | en_US |
dc.identifier.doi | 10.1063/5.0115543 | |
dc.identifier.isbn | 9.78074E+12 | |
dc.identifier.issn | 0094-243X | |
dc.identifier.scopus | 2-s2.0-85142515407 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://doi.org/10.1063/5.0115543 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/7459 | |
dc.identifier.volume | 2483 | en_US |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Physics Inc. | en_US |
dc.relation.ispartof | AIP Conference Proceedings | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.snmz | KY08803 | |
dc.subject | Continuity | en_US |
dc.subject | Open Set | en_US |
dc.subject | Topological Space | en_US |
dc.title | A New Topology Via a Topology | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |