A New Topology Via a Topology

dc.contributor.authorDagci, F.I.
dc.contributor.authorÇakallı, Hüseyin
dc.date.accessioned2024-07-12T21:40:43Z
dc.date.available2024-07-12T21:40:43Z
dc.date.issued2022en_US
dc.department[Belirlenecek]en_US
dc.description5th International Conference of Mathematical Sciences, ICMS 2021 -- 23 June 2021 through 27 June 2021 -- -- 184127en_US
dc.description.abstractIn this extended abstract, we modify the definition of h-open set introduced in [1] by F. Abbas who neglects that the set of all h-open sets is a topology, and we show that the union of any family of h-open subsets of X is h-open that ensures that the set of all h-open subsets of a topological space (X, ?) forms a topology which is finer than ?, where a subset A of a topological space (X, ?) is said to be h-open if A ? Int(A ? U) for every non-empty subset U of X such that U ? ?. We also give continuity type theorems. © 2022 American Institute of Physics Inc.. All rights reserved.en_US
dc.identifier.doi10.1063/5.0115543
dc.identifier.isbn9.78074E+12
dc.identifier.issn0094-243X
dc.identifier.scopus2-s2.0-85142515407en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1063/5.0115543
dc.identifier.urihttps://hdl.handle.net/20.500.12415/7459
dc.identifier.volume2483en_US
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.relation.ispartofAIP Conference Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKY08803
dc.subjectContinuityen_US
dc.subjectOpen Seten_US
dc.subjectTopological Spaceen_US
dc.titleA New Topology Via a Topologyen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar