Equivalent of elliptic integrals

dc.contributor.authorTaşdelen, Necat
dc.date.accessioned2024-07-12T20:50:00Z
dc.date.available2024-07-12T20:50:00Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe finite elliptic similar integrals of second kind are well known as. Those integrals cannot be solvable by any classical method. In this paper, we prove that the above equation can be replaced by. As known, on the positive Cartesian, all astroids are expressed by, where a, b, and r are any positive constant real numbers. Using this equivalency and when (r = 2) the perimeter of an ellipse is estimated at full-range with a maximum error % = ?0, 000002432. Full-range is (1 < b a < ?).en_US
dc.identifier.citationTaşdelen, N. (2009). Equivalent of elliptic integrals. Maltepe Üniversitesi. s. 301.en_US
dc.identifier.endpage302en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage301en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2267
dc.institutionauthorTaşdelen, Necat
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07594
dc.titleEquivalent of elliptic integralsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar