Equivalent of elliptic integrals
dc.contributor.author | Taşdelen, Necat | |
dc.date.accessioned | 2024-07-12T20:50:00Z | |
dc.date.available | 2024-07-12T20:50:00Z | |
dc.date.issued | 2009 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | The finite elliptic similar integrals of second kind are well known as. Those integrals cannot be solvable by any classical method. In this paper, we prove that the above equation can be replaced by. As known, on the positive Cartesian, all astroids are expressed by, where a, b, and r are any positive constant real numbers. Using this equivalency and when (r = 2) the perimeter of an ellipse is estimated at full-range with a maximum error % = ?0, 000002432. Full-range is (1 < b a < ?). | en_US |
dc.identifier.citation | Taşdelen, N. (2009). Equivalent of elliptic integrals. Maltepe Üniversitesi. s. 301. | en_US |
dc.identifier.endpage | 302 | en_US |
dc.identifier.isbn | 9.78605E+12 | |
dc.identifier.startpage | 301 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2267 | |
dc.institutionauthor | Taşdelen, Necat | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY07594 | |
dc.title | Equivalent of elliptic integrals | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |