Generalized potentials in weighted variable exponent Lebesgue spaces on homogeneous spaces
dc.contributor.author | Hajibayov, Mubariz G. | |
dc.contributor.author | Samko, Stefan G. | |
dc.date.accessioned | 2024-07-12T20:50:18Z | |
dc.date.available | 2024-07-12T20:50:18Z | |
dc.date.issued | 2009 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | In the sequel (X; %; ¹) always stands for a bounded quasimetric space with quasidistance % and Borel regular measure ¹. We denote d = diamX. The measure ¹ is supposed to satisfy the growth condition, Let © be an N-function and w a weight. The weighted Orlicz-Musielak space L©(X;w) is de¯ned as the set of all real-valued ¹-measurable functions f on X such that... | en_US |
dc.identifier.citation | Hajibayov, M. G. ve Samko, S. G. (2009). Generalized potentials in weighted variable exponent Lebesgue spaces on homogeneous spaces. Maltepe Üniversitesi. s. 282-283. | en_US |
dc.identifier.endpage | 283 | en_US |
dc.identifier.isbn | 9.78605E+12 | |
dc.identifier.startpage | 282 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2301 | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY07628 | |
dc.subject | Weighted estimates | en_US |
dc.subject | Generalized potential | en_US |
dc.subject | Variable exponent | en_US |
dc.subject | Variable Lebesgue space | en_US |
dc.subject | Musielak-Orlicz space | en_US |
dc.title | Generalized potentials in weighted variable exponent Lebesgue spaces on homogeneous spaces | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |