Generalized potentials in weighted variable exponent Lebesgue spaces on homogeneous spaces

dc.contributor.authorHajibayov, Mubariz G.
dc.contributor.authorSamko, Stefan G.
dc.date.accessioned2024-07-12T20:50:18Z
dc.date.available2024-07-12T20:50:18Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn the sequel (X; %; ¹) always stands for a bounded quasimetric space with quasidistance % and Borel regular measure ¹. We denote d = diamX. The measure ¹ is supposed to satisfy the growth condition, Let © be an N-function and w a weight. The weighted Orlicz-Musielak space L©(X;w) is de¯ned as the set of all real-valued ¹-measurable functions f on X such that...en_US
dc.identifier.citationHajibayov, M. G. ve Samko, S. G. (2009). Generalized potentials in weighted variable exponent Lebesgue spaces on homogeneous spaces. Maltepe Üniversitesi. s. 282-283.en_US
dc.identifier.endpage283en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage282en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2301
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07628
dc.subjectWeighted estimatesen_US
dc.subjectGeneralized potentialen_US
dc.subjectVariable exponenten_US
dc.subjectVariable Lebesgue spaceen_US
dc.subjectMusielak-Orlicz spaceen_US
dc.titleGeneralized potentials in weighted variable exponent Lebesgue spaces on homogeneous spacesen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar