Copulas pareto: characterizations and dependence measures

dc.contributor.authorBekrizadeh, Hakim
dc.date.accessioned2024-07-12T20:50:09Z
dc.date.available2024-07-12T20:50:09Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractA bivariate copula can be statistically interpreted as a bivariate distribution function with uniform marginals. Sklar (1959) argues that for any bivariate distribution function, say H with marginals F and G, there exists a copula functional, say C, such that H(x, y) = C[F (x), G(y)], for (x, y) T in the support of H. This article provides Copulas pareto using Sklar theorem and new characterizations and dependence measures Kendall’s tau and Spearman’s rho of the Copulas pareto.en_US
dc.identifier.citationBekrizadeh, H. (2009). Copulas pareto: characterizations and dependence measures. Maltepe Üniversitesi. s. 186.en_US
dc.identifier.endpage187en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage186en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2284
dc.institutionauthorBekrizadeh, Hakim
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07611
dc.titleCopulas pareto: characterizations and dependence measuresen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar