Non-commutative geometry and application to schrödinger equation with certain central potentials

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

We obtain exact solutions of the 2D Schr¨odinger equation with the central potentials V (r) = ar2 + br?2 + cr?4 and V (r) = ar?1+br?2 in a non-commutative space up to the first order of noncommutativity parametert using the power-series expansion method similar to the 2D Schr¨odinger equation with the singular even-power and inverse-power potentials respectively in commutative space. We derive the exact non-commutative energy levels and show that the energy is shifted to m levels, as in the Zeeman effect.

Açıklama

Anahtar Kelimeler

Non-commutative geometry, Solutions of wave equations, Bound states, Algebraic methods

Kaynak

International Conference of Mathematical Sciences (ICMS 2019)

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Slimane, Z. (2019). Non-commutative geometry and application to schrödinger equation with certain central potentials. International Conference of Mathematical Sciences (ICMS 2019). s. 176.