Differentiation in a new viewpoint

dc.contributor.authorParsian, Ali
dc.date.accessioned2024-07-12T20:51:22Z
dc.date.available2024-07-12T20:51:22Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn the theory of functions the domain of the differentiable functions needs to be locally connected and the derivative of a single variable function with variable x,for a particular value of x is a number given by the limh?0 f(x + h) ? f(x) h Provided that this limit exists. This definition requires the values of the function f for all of the elements of its domain which are sufficiently near the point x.Here we introduce a new generalized form of the derivative definition in which the values of at most countably many points of the domain of the function near the x, i.e., the elements of a sequence which approaches to x,is needed, the situation which is hold with connivance in the region of all of sciences. Moreover this definition is done in such a way that all of the theorems of this theory are valid yet. First we generalized the concept of continuity of functions and show the validity of all of the theorems of this section of calculus and then use of them for extending the basic theory.en_US
dc.identifier.citationParsian, A. (2009). Differentiation in a new viewpoint. Maltepe Üniversitesi. s. 87.en_US
dc.identifier.endpage88en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage87en_US
dc.identifier.urihttps://www.maltepe.edu.tr/Content/Media/CkEditor/03012019014112056-AbstractBookICMS2009Istanbul.pdf#page=76
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2405
dc.institutionauthorParsian, Ali
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07770
dc.titleDifferentiation in a new viewpointen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar