Uniform stabilization of the Klein-Gordon system

dc.contributor.authorCavalcanti, Marcelo M.
dc.date.accessioned2024-07-12T20:47:29Z
dc.date.available2024-07-12T20:47:29Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractWe consider the Klein-Gordon system posed in an inhomogeneous medium ? with smooth boundary ?? subject to two localized dampings. The first one is of the type viscoelastic and is distributed around a neighborhood ? of the boundary according to the Geometric Control Condition. The second one is a frictional damping and we consider it hurting the geometric condition of control. We show that the energy of the system goes uniformly and exponentially to zero for all initial data of finite energy taken in bounded sets of finite energy phase-space. For this purpose, refined microlocal analysis arguments are considered by exploiting ideas due to Burq and Gérard [3].en_US
dc.identifier.citationCavalcanti, M. M. (2019). Uniform stabilization of the Klein-Gordon system. Third International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-4.en_US
dc.identifier.endpage4en_US
dc.identifier.isbn978-0-7354-1930-8
dc.identifier.startpage1en_US
dc.identifier.urihttps://aip.scitation.org/doi/abs/10.1063/1.5136100
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2005
dc.institutionauthorCavalcanti, Marcelo M.
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofThird International Conference of Mathematical Sciencesen_US
dc.relation.isversionof10.1063/1.5136100en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY08638
dc.titleUniform stabilization of the Klein-Gordon systemen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar