A VARIATION ON LACUNARY STATISTICAL QUASI CAUCHY SEQUENCES
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
ANKARA UNIV, FAC SCI
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper, the concept of a lacunary statistically delta-quasi-Cauchy sequence is investigated. In this investigation, we proved interesting theorems related to lacunary statistically delta-ward continuity, and some other kinds of continuities. A real valued function f defined on a subset A of R, the set of real numbers, is called lacunary statistically S ward continuous on A if it preserves lacunary statistically delta quasi-Cauchy sequences of points in A, i.e. (f (alpha(k))) is a lacunary statistically delta quasi-Cauchy sequence whenever (alpha(k)) is a lacunary statistically delta quasi-Cauchy sequence of points in A, where a sequence (alpha(k)) is called lacunary statistically delta quasi-Cauchy if (Delta alpha(k)) is a lacunary statistically quasi-Cauchy sequence. It turns out that the set of lacunary statistically delta ward continuous functions is a closed subset of the set of continuous functions.
Açıklama
Anahtar Kelimeler
Lacunary statistical convergence, quasi-Cauchy sequences, continuity
Kaynak
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
66
Sayı
2