Generalized cauchy problem: caputo type
dc.contributor.author | Parsian, Hossein | |
dc.date.accessioned | 2024-07-12T20:51:07Z | |
dc.date.available | 2024-07-12T20:51:07Z | |
dc.date.issued | 2009 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | Fractional derivatives, or more precisely derivatives of arbitrary orders, have played a significant role in engineering, sciences, pure and applied mathematics in recent years. Several types of fractional derivative and integral have proposed. These definitions include Riemann-Liouville fractional derivative and integral. Grunwald-Letnikov, Weyl-Marchaud, Caputo and Riesz fractional derivative. In this research work we will generalize Cauchy problem to fractional derivative. We will introduce generalized cauchy problem (GCP) as two faces, left side GCP and right side GCP. In next section we will generalize numerical Euler method to GCP. The generalized numerical Euler method (GNEM) reduces to numerical Euler method (NEM) when GCP reduce to CP. | en_US |
dc.identifier.citation | Parsian, H. (2009). Generalized cauchy problem: caputo type. Maltepe Üniversitesi. s. 198. | en_US |
dc.identifier.endpage | 199 | en_US |
dc.identifier.isbn | 9.78605E+12 | |
dc.identifier.startpage | 198 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2346 | |
dc.institutionauthor | Parsian, Hossein | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY07711 | |
dc.title | Generalized cauchy problem: caputo type | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |