Well-posedness of basset difference equations

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

The stable difference scheme for the approximate solution of the initial value problem du(t) dt + D 1 2 t u(t) + Au(t) = f(t), 0 < t < 1, u(0) = 0 (1) for the fractional differential equation in a Banach space E with the strongly positive operator A is presented. The well-posedness of the difference scheme in difference analoques of spaces of smooth functions is established. In practice, the coercive stability estimates for the solution of difference schemes for the fractional parabolic equation with nonlocal boundary conditions in space variable and the multidimensional fractional parabolic equation with Dirichlet condition in space variables and the 2m-th order multidimensional fractional parabolic equation are obtained.

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Ashyralyev, A. (2009). Well-posedness of basset difference equations. Maltepe Üniversitesi. s. 91.