Well-posedness of basset difference equations
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
The stable difference scheme for the approximate solution of the initial value problem du(t) dt + D 1 2 t u(t) + Au(t) = f(t), 0 < t < 1, u(0) = 0 (1) for the fractional differential equation in a Banach space E with the strongly positive operator A is presented. The well-posedness of the difference scheme in difference analoques of spaces of smooth functions is established. In practice, the coercive stability estimates for the solution of difference schemes for the fractional parabolic equation with nonlocal boundary conditions in space variable and the multidimensional fractional parabolic equation with Dirichlet condition in space variables and the 2m-th order multidimensional fractional parabolic equation are obtained.
Açıklama
Anahtar Kelimeler
Kaynak
International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Ashyralyev, A. (2009). Well-posedness of basset difference equations. Maltepe Üniversitesi. s. 91.