A high order of accuracy of difference schemes for the nonlocal boundary value Schrödinger problem

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this study, nonlocal boundary value Schr¨odinger type problem in a Hilbert space with the self-adjoint positive definite operator is investigated. Single step stable third and fourth order of accuracy difference schemes for the numerical solution of this problem are presented. The main theorems on the stability of these difference schemes are established. In application, theorem on the stability of difference schemes for nonlocal boundary value problems for Schr¨odinger equations is proved. Numerical results are given.

Açıklama

Anahtar Kelimeler

Difference schemes, stability, problem, Schrödinger problem

Kaynak

Fourth International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Ashyralyev, A. ve Sirma, A. (2021). A high order of accuracy of difference schemes for the nonlocal boundary value Schrödinger problem. Fourth International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-5.