Smoothing the global mean based on functional principal component analysis

dc.contributor.authorTandoğdu, Y.
dc.contributor.authorCidar, Ö.
dc.date.accessioned2024-07-12T20:51:17Z
dc.date.available2024-07-12T20:51:17Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractThere are many cases in almost all application fields where the estimation of population parameters is carried out using sparse data. The data may be time or space ( r) dependent. When such data comes from a set of n trajectories (subjects), the Functional Principal Component Analysis (FPCA) is used to process the data for estimation purposes. In this study, the estimation and smoothing of global mean is considered.en_US
dc.identifier.citationTandoğdu, Y. ve Cidar, Ö. (2009). Smoothing the global mean based on functional principal component analysis. Maltepe Üniversitesi. s. 394.en_US
dc.identifier.endpage395en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage394en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2391
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesien_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07756
dc.subjectSmoothingen_US
dc.subjectFunctionalen_US
dc.subjectSparse dataen_US
dc.subjectCovarianceen_US
dc.titleSmoothing the global mean based on functional principal component analysisen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar