Smoothing the global mean based on functional principal component analysis
dc.contributor.author | Tandoğdu, Y. | |
dc.contributor.author | Cidar, Ö. | |
dc.date.accessioned | 2024-07-12T20:51:17Z | |
dc.date.available | 2024-07-12T20:51:17Z | |
dc.date.issued | 2009 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | There are many cases in almost all application fields where the estimation of population parameters is carried out using sparse data. The data may be time or space ( r) dependent. When such data comes from a set of n trajectories (subjects), the Functional Principal Component Analysis (FPCA) is used to process the data for estimation purposes. In this study, the estimation and smoothing of global mean is considered. | en_US |
dc.identifier.citation | Tandoğdu, Y. ve Cidar, Ö. (2009). Smoothing the global mean based on functional principal component analysis. Maltepe Üniversitesi. s. 394. | en_US |
dc.identifier.endpage | 395 | en_US |
dc.identifier.isbn | 9.78605E+12 | |
dc.identifier.startpage | 394 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2391 | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY07756 | |
dc.subject | Smoothing | en_US |
dc.subject | Functional | en_US |
dc.subject | Sparse data | en_US |
dc.subject | Covariance | en_US |
dc.title | Smoothing the global mean based on functional principal component analysis | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |