Weakly continuous modules

dc.contributor.authorShirinkam, S.
dc.contributor.authorGhalandarzadeh, SH.
dc.contributor.authorMalakooti Rad, P.
dc.date.accessioned2024-07-12T20:51:53Z
dc.date.available2024-07-12T20:51:53Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractLet R be a commutative ring with identity and M be an unitary R-module. In this article we investigate the concept of weakly continuous modules as a natural generalization of weakly continuous rings. M is called weakly continuous if the annihilator of each element of M is essential in a summand of R, and M satisfies the C2-condition. Also M is called F -semiregular if for every x ? M, there exists a decomposition M = A ? B such that A is projective, A ? Rx and Rx ? B ? F . If M is a module, the following conditions are equivalent for m ? M: (1) Ann(m) ?ess eR for some e 2 = e ? R.(2) mR = P ? S where P is projective and S is singular submodule. M is called ACS module if the above conditions are satisfied for every element m ? M. We investigate some equivalent conditions of weakly continuous multiplication modules. An R-module M is a multiplication module if for every submodule K of M there is an ideal I of R such that K = IM. A submodule N of M is idempotent if (N : M)N = N. Let the following statements.en_US
dc.identifier.citationShirinkam, S., Ghalandarzadeh, SH. ve Malakooti Rad, P. (2009). Weakly continuous modules. Maltepe Üniversitesi. s. 355.en_US
dc.identifier.endpage356en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage355en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2493
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07858
dc.titleWeakly continuous modulesen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar