Solution of mixed B.V.P including a first order three dimensional P.D.E with nonlocal and global boundary conditions

dc.contributor.authorEbadpour, J.
dc.contributor.authorSabegh, D. Jabbari
dc.date.accessioned2024-07-12T20:51:23Z
dc.date.available2024-07-12T20:51:23Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper solution of mixed complex boundary value problem of first order is considered. The basic term in the problem with respect to space variables. has Cauchy-Riemann operator. We first use Laplace transformation to introduce spectral problem. Then we investigate corresponding for Fredholms type. The spectral problem here is different from classical boundary value problems. Here boundary conditions are nonlocal and global and dependent functionals to boundary conditions are in general linear. At the end for the solution of spectral problem which depends on unknown complex parameter. We find asymptotic expansion. With the help of this asymptotic expansion we prove existance and uniqueness of mixed problem.en_US
dc.identifier.citationEbadpour, J. ve Sabegh, D. J. (2009). Solution of mixed B.V.P including a first order three dimensional P.D.E with nonlocal and global boundary conditions. Maltepe Üniversitesi. s. 210.en_US
dc.identifier.endpage211en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage210en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2407
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07772
dc.titleSolution of mixed B.V.P including a first order three dimensional P.D.E with nonlocal and global boundary conditionsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar