Numerical analysis of convergence rate of approximation solutions of a boundary value problem for oscillation processes

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In the paper [1] the boundary problem was investigated for the controlled processes described by integrodifferential equation of hyperbolic-type with Fredholm integral operator. A generalized solution and its approximations were constructed for the boundary value problem with boundary conditions of the second and third types. The convergence of approximations to the generalized solution was proved in the norm of Hilbert space. In the present paper, the dynamics of convergence rate is investigated of the approximations depending on the changes of the stiffness coefficient of the elastic fixation. The results of the numerical analysis show that with increasing of stiffness coefficient (parameter ?) of the elastic fixation the radius of convergence of Neumann series increases, and the convergence rate of the approximations to the exact solution accelerates.

Açıklama

Anahtar Kelimeler

Boundary value problem, Coefficient of stiffness, Convergence

Kaynak

International Conference of Mathematical Sciences (ICMS 2019)

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Abdyldaeva, E., Kabaeva, Z. ve Karabakirov, K. (2019). Numerical analysis of convergence rate of approximation solutions of a boundary value problem for oscillation processes. International Conference of Mathematical Sciences (ICMS 2019). s. 132.