A certain subclass of P-valently analytic functions of bazilevi?c type
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
Using extended Ruscheweyh [2] derivatives we define a new subclass M(n, p, ?, ?) of p-valently analytic functions which are of Bazilevi?c [1] type. A function f which is p-valently analytic is said to be in the subclass M(n, p, ?, ?) if it satisfies Re à pDn+p f(z) Dn+p?1f(z) à Dn+p?1 f(z) z p !?! > ? where z ? U, U = {z : |z| < 1}, ? > 0 and 0 ? ? < p. Dn+p f(z) and Dn+p?1 f(z) are extensions of the familiar operator Dnf(z) of Ruscheweyh Derivatives [2], n ? N0 = N ? {0}. These operators were considered by Sekine, Owa and Obradovic [3]. We find some sufficient conditions and angular properties for functions belonging to the subclass M(n, p, ?, ?).
Açıklama
Anahtar Kelimeler
Kaynak
International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Akbarally, A. ve Darus, M. (2009). A certain subclass of P-valently analytic functions of bazilevi?c type. Maltepe Üniversitesi. s. 77.