Quadrature formula for semi-bounded solution of characteristic singular integral equation of cauchy type
Küçük Resim Yok
Tarih
2009
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
It is known that the solutions of characteristic singular integral equations (SIEs) are expressed in terms of singular integrals of Cauchy type with wight functions of the form w(x) = (x - a)º(b - x)¹ , where -1 < º; ¹ < 1: In this paper new quadrature formulas are presented to approximate singular integrals of Cauchy type for half bounded solution of characteristic SIEs on the interval [-1; 1]. Linear interpolation spline and modification discrete vortices method (MMDV) are used to construct quadrature formula. Estimations of error are obtained in the classes of functions H ([-1; 1]) and C1([-1; 1]). Numerical experiments are presented to show the validity of the method presented.
Açıklama
Anahtar Kelimeler
Singular integral, Singular integral equations, Quadrature formula, Canonic partition, Discrete vortices method, Approximation, Spline
Kaynak
International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Eshkuvvatov, Z. K. ve Long, N. M. A. N. (2009). Quadrature formula for semi-bounded solution of characteristic singular integral equation of cauchy type. Maltepe Üniversitesi. s. 397.